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Introduction

Implementation in Maple

The subject of consideration is a linear
algebraic tridiagonal system for n unknowns
represented by a matrix equation
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Step 3. Solution to the linear algebraic
tridiagonal system (1). Bearing in mind [1] we
conclude that this problem comes down to
resolving linear recurrence equation
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Subsequently we implement steps 1-3

Step 1.Implementation in Maple

Linear recurrences algorithm
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Bearing in mind the considerations presented
in [1] we conclude that solution to (1) can be
obtained in 3 steps.

Step 1. Calculation of the determinant ofW

To this end let us consider the tridiagonal linear
system of algebraic equation which has 2-
Toeplitz structure and consists of 100
unknowns with main matrix of the form
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and the vector of right-hand-sides of the
equations has the form

 [ ] ,1001×= idd  ,1+= idi
100,..,2,1=i

In order to solve this system of equations using
the above presented recurrence method we
implement the proper syntax to Maple system,
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We are to use Maple system to implement an
algorithm which is based on results presented
in [1].
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Conclusions

Step 1. Calculation of the determinant of
the matrix
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Step 2. Calculation of which is the
determinant of the matrix obtained from matrix

by replacing its first column by the vector .
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In order to obtain determinant we must
take into account the second order
nonhomogeneous linear recurence equation
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together with initial conditions
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implement the proper syntax to Maple system,
[2].

We start with declaration of all data
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It has to be emphasized that the presented
algorithm can be used without necessity to
impose any conditons on elements of main
matrix of the analyzed linear system of
equations.
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